Spinnaker SDK C++
4.2.0.46
 
 

 
Loading...
Searching...
No Matches
StereoAcquisition_QuickSpin.cpp

StereoAcquisition_QuickSpin.cpp shows how to acquire image sets from a stereo camera using the QuickSpin API.

StereoAcquisition_QuickSpin.cpp shows how to acquire image sets from a stereo camera using the QuickSpin API. QuickSpin is a subset of the Spinnaker library that allows for simpler node access and control. The image sets are then saved to file and/or used to compute 3D point cloud and saved as a PLY (Polygon File Format) file.

This example touches on the preparation and cleanup of a camera just before and just after the acquisition of images. Image retrieval and conversion, grabbing image data, and saving images are all covered as well. Retrieving node information is the only portion of the example that differs from Acquisition.

A much wider range of topics is covered in the full Spinnaker examples than in the QuickSpin ones. There are only enough QuickSpin examples to demonstrate node access and to get started with the API; please see full Spinnaker examples for further or specific knowledge on a topic.

Please leave us feedback at: https://www.surveymonkey.com/r/TDYMVAPI More source code examples at: https://github.com/Teledyne-MV/Spinnaker-Examples Need help? Check out our forum at: https://teledynevisionsolutions.zendesk.com/hc/en-us/community/topics

//=============================================================================
// Copyright (c) 2024 FLIR Integrated Imaging Solutions, Inc. All Rights
// Reserved
//
// This software is the confidential and proprietary information of FLIR
// Integrated Imaging Solutions, Inc. ("Confidential Information"). You
// shall not disclose such Confidential Information and shall use it only in
// accordance with the terms of the non-disclosure or license agreement you
// entered into with FLIR Integrated Imaging Solutions, Inc. (FLIR).
//
// FLIR MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
// SOFTWARE, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE, OR NON-INFRINGEMENT. FLIR SHALL NOT BE LIABLE FOR ANY DAMAGES
// SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING
// THIS SOFTWARE OR ITS DERIVATIVES.
//=============================================================================
//=============================================================================
// System Includes
//=============================================================================
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>
#include <sstream>
#include <filesystem>
//=============================================================================
// Examples Includes
//=============================================================================
#include "PointCloud.h"
#include "Spinnaker.h"
#include "SpinStereoHelper.h"
#include "StereoParameters.h"
#include "Getopt.h"
using namespace Spinnaker;
using namespace Spinnaker::GenApi;
using namespace Spinnaker::GenICam;
using namespace SpinStereo;
using namespace std;
bool ProcessArgs(int argc, char* argv[], StereoAcquisitionParams& params)
{
string executionPath = string(argv[0]);
size_t found = executionPath.find_last_of("/\\");
string programName = executionPath.substr(found + 1);
int iOpt;
const char* currentParamPosition;
bool bBadArgs = false;
// If no arguments run with default parameters.
if (argc == 1)
{
params.doEnablePointCloudOutput = true;
params.doEnableSpeckleFilter = true;
return true;
}
const char* paramMatchPattern = "n:ABCDEFGh?";
while ((iOpt = GetOption(argc, argv, paramMatchPattern, &currentParamPosition)) != 0)
{
switch (iOpt)
{
//
// Options
//
case 'n':
#ifdef _MSC_VER
if (sscanf_s(currentParamPosition, "%d", &params.numImageSets) != 1)
#else
if (sscanf(currentParamPosition, "%d", &params.numImageSets) != 1)
#endif
{
bBadArgs = true;
}
else
{
if (params.numImageSets <= 0)
{
cout << "The numImageSets argument must be a number greater than 0." << endl;
bBadArgs = true;
}
}
break;
case 'A':
break;
case 'B':
break;
case 'C':
break;
case 'D':
break;
case 'E':
break;
case 'F':
params.doEnablePointCloudOutput = true;
break;
case 'G':
params.doEnableSpeckleFilter = true;
break;
case '?':
case 'h':
default:
cerr << "Invalid option provided: " << currentParamPosition << endl;
DisplayHelp(programName, params);
return false;
}
}
if (bBadArgs)
{
cout << "Invalid arguments" << endl;
DisplayHelp(programName, params);
return false;
}
{
{
cout << "Need to have disparity Image (-E) for point cloud generation" << endl << endl;
DisplayHelp(programName, params);
return false;
}
{
cout << "Need to have Rectified Sensor1 Image (-C) for point cloud generation" << endl << endl;
DisplayHelp(programName, params);
return false;
}
}
{
cout << "Need to enable at least one image (-A/-B/-C/-D/-E)" << endl << endl;
DisplayHelp(programName, params);
return false;
}
return true;
}
void DisplayHelp(const string& pszProgramName, const StereoAcquisitionParams& params)
{
cout << "Usage: ";
cout << pszProgramName << " [OPTIONS]" << endl << endl;
cout << "OPTIONS" << endl
<< endl
<< " -n NUM_FRAMES Number frames" << endl
<< " Default is " << params.numImageSets << endl
<< " -A DO_ENABLE_RAW_SENSOR1_TRANSMIT doEnableRawSensor1Transmit" << endl
<< " Default is " << params.doEnableRawSensor1Transmit << endl
<< " -B DO_ENABLE_RAW_SENSOR2_TRANSMIT doEnableRawSensor2Transmit" << endl
<< " Default is " << params.doEnableRawSensor2Transmit << endl
<< " -C DO_ENABLE_RECT_SENSOR1_TRANSMIT doEnableRectSensor1Transmit" << endl
<< " Default is " << params.doEnableRectSensor1Transmit << endl
<< " -D DO_ENABLE_RECT_SENSOR2_TRANSMIT doEnableRectSensor2Transmit" << endl
<< " Default is " << params.doEnableRectSensor2Transmit << endl
<< " -E DO_ENABLE_DISPARITY_TRANSMIT doEnableDisparityTransmit" << endl
<< " Default is " << params.doEnableDisparityTransmit << endl
<< " -F DO_ENABLE_POINTCLOUD_OUTPUT doEnablePointCloudOutput" << endl
<< " Default is " << params.doEnablePointCloudOutput << endl
<< " -G DO_ENABLE_SPECKLE_FILTER doEnableSpeckleFilter" << endl
<< " Default is " << params.doEnableSpeckleFilter << endl
<< "EXAMPLE" << endl
<< endl
<< " " << pszProgramName << " -n " << params.numImageSets << " -A "
<< " -B "
<< " -C "
<< " -D "
<< " -E "
<< " -F " << endl
<< endl;
}
const StereoParameters& stereoParameters,
ImageList& imageList,
int counter,
string prefix = "")
{
PointCloudParameters pointCloudParameters = PointCloudParameters();
pointCloudParameters.decimationFactor = 1;
pointCloudParameters.ROIImageLeft = 0;
pointCloudParameters.ROIImageTop = 0;
pointCloudParameters.ROIImageRight = static_cast<unsigned int>(
imageList.GetByPayloadType(SPINNAKER_IMAGE_PAYLOAD_TYPE_DISPARITY_SENSOR1)->GetWidth());
pointCloudParameters.ROIImageBottom = static_cast<unsigned int>(
imageList.GetByPayloadType(SPINNAKER_IMAGE_PAYLOAD_TYPE_DISPARITY_SENSOR1)->GetHeight());
StereoCameraParameters stereoCameraParameters = StereoCameraParameters();
stereoCameraParameters.coordinateOffset = stereoParameters.scan3dCoordinateOffset;
stereoCameraParameters.baseline = stereoParameters.scan3dBaseline;
stereoCameraParameters.focalLength = stereoParameters.scan3dFocalLength;
stereoCameraParameters.principalPointU = stereoParameters.scan3dPrincipalPointU;
stereoCameraParameters.principalPointV = stereoParameters.scan3dPrincipalPointV;
stereoCameraParameters.disparityScaleFactor = stereoParameters.scan3dCoordinateScale;
stereoCameraParameters.invalidDataFlag = stereoParameters.scan3dInvalidDataFlag;
stereoCameraParameters.invalidDataValue = stereoParameters.scan3dInvalidDataValue;
imageList.GetByPayloadType(SPINNAKER_IMAGE_PAYLOAD_TYPE_DISPARITY_SENSOR1),
imageList.GetByPayloadType(SPINNAKER_IMAGE_PAYLOAD_TYPE_RECTIFIED_SENSOR1),
pointCloudParameters,
stereoCameraParameters);
stringstream strstr("");
strstr << prefix;
strstr << "PointCloud_" << counter << ".ply";
cout << "Save point cloud to file: " << strstr.str() << endl;
pointCloud.SavePointCloudAsPly(strstr.str().c_str());
return true;
}
const StreamTransmitFlags& streamTransmitFlags,
ImageList& imageList,
int counter,
const string prefix = "")
{
cout << "Save images to files." << endl;
stringstream strstr;
if (streamTransmitFlags.rawSensor1TransmitEnabled)
{
strstr.str("");
strstr << prefix;
strstr << "RawSensor1_" << counter << ".png";
string rawSensor1Filename = strstr.str();
cout << "Save raw Sensor1 image to file: " << rawSensor1Filename << endl;
imageList.GetByPayloadType(SPINNAKER_IMAGE_PAYLOAD_TYPE_RAW_SENSOR1)->Save(rawSensor1Filename.c_str());
}
if (streamTransmitFlags.rawSensor2TransmitEnabled)
{
strstr.str("");
strstr << prefix;
strstr << "RawSensor2_" << counter << ".png";
string rawSensor2Filename = strstr.str();
cout << "Save raw Sensor2 image to file: " << rawSensor2Filename << endl;
imageList.GetByPayloadType(SPINNAKER_IMAGE_PAYLOAD_TYPE_RAW_SENSOR2)->Save(rawSensor2Filename.c_str());
}
if (streamTransmitFlags.rectSensor1TransmitEnabled)
{
strstr.str("");
strstr << prefix;
strstr << "RectSensor1_" << counter << ".png";
string rectSensor1Filename = strstr.str();
cout << "Save rectified sensor1 image to file: " << rectSensor1Filename << endl;
imageList.GetByPayloadType(SPINNAKER_IMAGE_PAYLOAD_TYPE_RECTIFIED_SENSOR1)->Save(rectSensor1Filename.c_str());
}
if (streamTransmitFlags.rectSensor2TransmitEnabled)
{
strstr.str("");
strstr << prefix;
strstr << "RectSensor2_" << counter << ".png";
string rectSensor2Filename = strstr.str();
cout << "Save rectified sensor2 image to file: " << rectSensor2Filename << endl;
imageList.GetByPayloadType(SPINNAKER_IMAGE_PAYLOAD_TYPE_RECTIFIED_SENSOR2)->Save(rectSensor2Filename.c_str());
}
if (streamTransmitFlags.disparityTransmitEnabled)
{
strstr.str("");
strstr << prefix;
strstr << "Disparity_" << counter << ".pgm";
string disparityFilename = strstr.str();
cout << "Save disparity image to file: " << disparityFilename << endl;
imageList.GetByPayloadType(SPINNAKER_IMAGE_PAYLOAD_TYPE_DISPARITY_SENSOR1)->Save(disparityFilename.c_str());
}
return true;
}
{
// NOTE:
//
// Camera firmware will report the current bandwidth required by the camera in the 'DeviceLinkCurrentThroughput'
// node. When 'DeviceLinkThroughputLimit' node is set by the user, firmware will automatically increase packet
// delay to fulfill the requested throughput. Therefore, once camera is configured for the desired
// framerate/image size/etc, set 'DeviceLinkCurrentThroughput' node value into 'DeviceLinkThroughputLimit' node,
// and packet size will be automatically set by the camera.
INodeMap& nodeMap = pCam->GetNodeMap();
// Set Stream Channel Packet Size to the max possible on its interface
CIntegerPtr ptrPacketSize = nodeMap.GetNode("GevSCPSPacketSize");
if (!IsReadable(pCam->GevSCPSPacketSize) || !IsWritable(pCam->GevSCPSPacketSize))
{
std::cerr << "Failed to get or set the GevSCPSPacketSize parameter from or to the camera." << std::endl;
return false;
}
const unsigned int maxGevSCPSPacketSize = static_cast<unsigned int>(pCam->GevSCPSPacketSize.GetMax());
const unsigned int maxPacketSize =
pCam->DiscoverMaxPacketSize() > maxGevSCPSPacketSize ? maxGevSCPSPacketSize : pCam->DiscoverMaxPacketSize();
pCam->GevSCPSPacketSize.SetValue(maxPacketSize);
cout << "PacketSize set to: " << pCam->GevSCPSPacketSize.GetValue() << endl;
if (!IsReadable(pCam->DeviceLinkCurrentThroughput))
{
std::cerr << "Failed to get the DeviceLinkCurrentThroughput parameter from the camera." << std::endl;
return false;
}
if (!IsReadable(pCam->DeviceLinkThroughputLimit) || !IsWritable(pCam->DeviceLinkThroughputLimit))
{
std::cerr << "Failed to get or set the DeviceLinkThroughputLimit parameter from or to the camera." << std::endl;
return false;
}
cout << "Current camera throughput: " << pCam->DeviceLinkCurrentThroughput.GetValue() << endl;
// If the 'DeviceLinkCurrentThroughput' value is lower than the minimum, set the lowest possible value allowed
// by the 'DeviceLinkCurrentThroughput' node
if (pCam->DeviceLinkThroughputLimit.GetMin() > pCam->DeviceLinkCurrentThroughput.GetValue())
{
cout << "DeviceLinkCurrentThroughput node minimum of: " << pCam->DeviceLinkThroughputLimit.GetMin()
<< " is higher than current throughput we desire to set (" << pCam->DeviceLinkCurrentThroughput.GetValue()
<< ")" << endl;
pCam->DeviceLinkThroughputLimit.SetValue(pCam->DeviceLinkThroughputLimit.GetMin());
}
else
{
// Set 'DeviceLinkCurrentThroughput' value into 'DeviceLinkThroughputLimit' node so that the
// camera will adjust inter-packet delay automatically
pCam->DeviceLinkThroughputLimit.SetValue(pCam->DeviceLinkCurrentThroughput.GetValue());
}
cout << "DeviceLinkThroughputLimit set to: " << pCam->DeviceLinkThroughputLimit.GetValue() << endl << endl;
return true;
}
bool AcquireImages(CameraPtr pCam, StereoParameters& stereoParameters, unsigned int numImageSets)
{
bool result = true;
cout << endl << endl << "*** IMAGE ACQUISITION ***" << endl << endl;
try
{
// Begin acquiring images
pCam->BeginAcquisition();
cout << endl << "Acquiring " << numImageSets << " image sets." << endl;
gcstring serialNumber = pCam->TLDevice.DeviceSerialNumber.GetValue();
uint64_t timeoutInMilliSecs = 2000;
for (unsigned int counter = 0; counter < numImageSets; counter++)
{
try
{
cout << endl << "Acquiring stereo image set: " << counter << endl;
//
// Retrieve next received set of stereo images
//
// *** NOTES ***
// GetNextImageSync() captures an image from each stream and returns a synchronized
// image set in an ImageList object based on the frame ID. The ImageList object is
// simply a generic container for one or more ImagePtr objects.
//
// For a set of stereo images, the ImageList object could contain up to five different
// image payload type images (Raw Sensor1, Raw Sensor2, Rectified Sensor1, Rectified Sensor2 and
// Disparity Sensor1). The five images that are returned in the ImageList are guaranteed
// to be synchronized in timestamp and Frame ID.
//
// This function cannot be invoked if GetNextImage is being invoked already.
// Results will be undeterministic and could lead to missing or lost of images.
//
// *** LATER ***
// Once the image list is saved and/or no longer needed, the image list must be
// released in order to keep the image buffer from filling up.
ImageList imageList;
imageList = pCam->GetNextImageSync(timeoutInMilliSecs);
if (!SpinStereo::ValidateImageList(stereoParameters.streamTransmitFlags, imageList))
{
cout << "Failed to get next image set." << endl;
continue;
}
if (stereoParameters.postProcessDisparity)
{
{
// Applying SpeckleFilter directly on disparity image
cout << "Applying SpeckleFilter on disparity image..." << endl;
ImagePtr pDisparity =
imageList.GetByPayloadType(SPINNAKER_IMAGE_PAYLOAD_TYPE_DISPARITY_SENSOR1);
ImageUtilityStereo::FilterSpecklesFromImage(
pDisparity,
stereoParameters.maxSpeckleSize,
stereoParameters.speckleThreshold,
stereoParameters.scan3dCoordinateScale,
stereoParameters.scan3dInvalidDataValue);
}
else
{
cout << "Skipping disparity post processing as disparity components are disabled" << endl;
}
}
stringstream ss("");
ss << "StereoAcquisition_QuickSpin_" << serialNumber << "_";
if (!SaveImagesToFile(stereoParameters.streamTransmitFlags, imageList, counter, ss.str()))
{
cerr << "Failed to save images." << endl;
result = false;
break;
}
if (stereoParameters.doComputePointCloud)
{
{
// only do if both streams are enabled
if (!Compute3DPointCloudAndSave(stereoParameters, imageList, counter, ss.str()))
{
cerr << "Failed to compute the 3D point cloud." << endl;
result = false;
break;
}
}
else
{
cout << "Skipping compute 3D point cloud as rectified sensor1 or disparity sensor1 components "
"are disabled"
<< endl;
}
}
}
{
cout << "Error: " << e.what() << endl;
result = false;
}
}
//
// End acquisition
//
// *** NOTES ***
// Ending acquisition appropriately helps ensure that devices clean up
// properly and do not need to be power-cycled to maintain integrity.
//
pCam->EndAcquisition();
}
{
cout << "Error: " << e.what() << endl;
result = false;
}
return result;
}
// This function acts as the body of the example; please see NodeMapInfo_QuickSpin example
// for more in-depth comments on setting up cameras.
bool RunSingleCamera(CameraPtr pCam, StereoParameters& stereoParameters, int numImageSets)
{
bool result = true;
try
{
// Print device info
result = PrintDeviceInfo(pCam);
// Initialize camera
pCam->Init();
// Check to make sure camera supports stereo vision
cout << endl << "Checking camera stereo support..." << endl;
if (!ImageUtilityStereo::IsStereoCamera(pCam))
{
cout << "Device serial number " << pCam->TLDevice.DeviceSerialNumber.GetValue()
<< " is not a valid BX camera. Skipping..." << endl;
// Deinitialize camera
pCam->DeInit();
return true;
}
// Configure heartbeat for GEV camera
#ifdef _DEBUG
result = result && DisableGVCPHeartbeat(pCam);
#else
result = result && ResetGVCPHeartbeat(pCam);
#endif
if (!result)
{
cerr << "Failed to set the heartbeat." << endl;
// Deinitialize camera
pCam->DeInit();
return false;
}
// Camera Stereo Parameters can be configured while camera is acquiring images, but
// enabling/disabling stream components is only possible before camera begins image acquisition
cout << endl << "Configuring camera..." << endl;
{
cerr << "Failed to configure the acquisition." << endl;
// Deinitialize camera
pCam->DeInit();
return false;
}
cout << endl << "Configuring device link throughput..." << endl;
{
cerr << "Failed to set the device link trhoughput." << endl;
// Deinitialize camera
pCam->DeInit();
return false;
}
cout << endl << "Configuring stereo processing..." << endl;
if (!SpinStereo::ConfigureStereoProcessing(pCam, stereoParameters))
{
cerr << "Failed to configure stereo processing." << endl;
// Deinitialize camera
pCam->DeInit();
return false;
}
cout << endl << "*** STEREO PARAMETERS *** " << endl << stereoParameters.ToString() << endl;
#if _DEBUG
cout << endl << "*** CAMERA CALIBRATION PARAMETERS ***" << endl;
{
cerr << "Failed to get camera calibration parameters." << endl;
return false;
}
#endif
// Acquire images
cout << endl << "Acquiring images..." << endl;
result = result | AcquireImages(pCam, stereoParameters, numImageSets);
#ifdef _DEBUG
// Reset heartbeat for GEV camera
result = result && ResetGVCPHeartbeat(pCam);
#endif
// Deinitialize camera
pCam->DeInit();
}
{
cout << "Error: " << e.what() << endl;
result = false;
}
return result;
}
// Example entry point; please see Enumeration_QuickSpin example for more
// in-depth comments on preparing and cleaning up the system.
int main(int argc, char** argv)
{
// Since this application saves images in the current folder
// we must ensure that we have permission to write to this folder.
// If we do not have permission, fail right away.
FILE* tempFile = fopen("test.txt", "w+");
if (tempFile == nullptr)
{
cout << "Failed to create file in current folder. Please check "
"permissions."
<< endl;
cout << "Press Enter to exit..." << endl;
getchar();
return -1;
}
fclose(tempFile);
remove("test.txt");
// determine cmd line arguments
StereoAcquisitionParams stereoAcquisitionParams;
if (!ProcessArgs(argc, argv, stereoAcquisitionParams))
{
return -1;
}
StereoParameters stereoParameters;
StreamTransmitFlags& streamTransmitFlags = stereoParameters.streamTransmitFlags;
streamTransmitFlags.rawSensor1TransmitEnabled = stereoAcquisitionParams.doEnableRawSensor1Transmit;
streamTransmitFlags.rawSensor2TransmitEnabled = stereoAcquisitionParams.doEnableRawSensor2Transmit;
streamTransmitFlags.rectSensor1TransmitEnabled = stereoAcquisitionParams.doEnableRectSensor1Transmit;
streamTransmitFlags.rectSensor2TransmitEnabled = stereoAcquisitionParams.doEnableRectSensor2Transmit;
streamTransmitFlags.disparityTransmitEnabled = stereoAcquisitionParams.doEnableDisparityTransmit;
stereoParameters.doComputePointCloud = stereoAcquisitionParams.doEnablePointCloudOutput;
stereoParameters.postProcessDisparity = stereoAcquisitionParams.doEnableSpeckleFilter;
// Print application build information
cout << "Application build date: " << __DATE__ << " " << __TIME__ << endl << endl;
// Retrieve singleton reference to system object
SystemPtr system = System::GetInstance();
// Print out current library version
const LibraryVersion spinnakerLibraryVersion = system->GetLibraryVersion();
cout << "Spinnaker library version: " << spinnakerLibraryVersion.major << "." << spinnakerLibraryVersion.minor
<< "." << spinnakerLibraryVersion.type << "." << spinnakerLibraryVersion.build << endl
<< endl;
// Retrieve list of cameras from the system
CameraList camList = system->GetCameras();
const unsigned int numCameras = camList.GetSize();
cout << "Number of cameras detected: " << numCameras << endl << endl;
// Finish if there are no cameras
if (numCameras == 0)
{
// Clear camera list before releasing system
camList.Clear();
// Release system
system->ReleaseInstance();
cout << "Not enough cameras!" << endl;
cout << "Done! Press Enter to exit..." << endl;
getchar();
return -1;
}
//
// Create shared pointer to camera
//
// *** NOTES ***
// The CameraPtr object is a shared pointer, and will generally clean itself
// up upon exiting its scope. However, if a shared pointer is created in the
// same scope that a system object is explicitly released (i.e. this scope),
// the reference to the shared point must be broken manually.
//
// *** LATER ***
// Shared pointers can be terminated manually by assigning them to nullptr.
// This keeps releasing the system from throwing an exception.
//
CameraPtr pCam = nullptr;
bool result = true;
// Run example on each camera
for (unsigned int i = 0; i < numCameras; i++)
{
// Select camera
pCam = camList.GetByIndex(i);
cout << endl << "Running example for camera " << i << "..." << endl;
// Run example
result = result | RunSingleCamera(pCam, stereoParameters, stereoAcquisitionParams.numImageSets);
cout << "Camera " << i << " example complete..." << endl << endl;
}
//
// Release reference to the camera
//
// *** NOTES ***
// Had the CameraPtr object been created within the for-loop, it would not
// be necessary to manually break the reference because the shared pointer
// would have automatically cleaned itself up upon exiting the loop.
//
pCam = nullptr;
// Clear camera list before releasing system
camList.Clear();
// Release system
system->ReleaseInstance();
cout << endl << "Done! Press Enter to exit..." << endl;
getchar();
return (result == true) ? 0 : -1;
}
int AcquireImages(CameraPtr pCam, INodeMap &nodeMap, INodeMap &nodeMapTLDevice)
Definition Acquisition.cpp:199
int main(int, char **)
Definition Acquisition.cpp:527
int ResetGVCPHeartbeat(CameraPtr pCam)
Definition Acquisition.cpp:138
int RunSingleCamera(CameraPtr pCam)
Definition Acquisition.cpp:479
int PrintDeviceInfo(INodeMap &nodeMap)
Definition Acquisition.cpp:441
int DisableGVCPHeartbeat(CameraPtr pCam)
Definition Acquisition.cpp:143
int GetOption(int argc, char **argv, const char *pszValidOpts, const char **ppszParam)
Definition Getopt.c:96
bool SetDeviceLinkThroughput(CameraPtr pCam)
Definition StereoAcquisition.cpp:352
bool ProcessArgs(int argc, char *argv[], StereoAcquisitionParams &params)
ProcessArgs.
Definition StereoAcquisition.cpp:75
bool Compute3DPointCloudAndSave(const StereoParameters &stereoParameters, ImageList &imageList, int counter, string prefix="")
Compute3DPointCloudAndSave.
Definition StereoAcquisition.cpp:247
void DisplayHelp(const string &pszProgramName, const StereoAcquisitionParams &params)
DisplayHelp.
Definition StereoAcquisition.cpp:200
bool SaveImagesToFile(const StreamTransmitFlags &streamTransmitFlags, ImageList &imageList, int counter, const string prefix="")
Definition StereoAcquisition.cpp:289
Class for handling parameters of the S3D camera.
Definition StereoParameters.h:66
int speckleThreshold
Speckle threshold value.
Definition StereoParameters.h:95
std::string ToString() const
Converts the parameters to a string representation.
Definition StereoParameters.cpp:48
bool doComputePointCloud
flag to enable computation of the 3D point cloud.
Definition StereoParameters.h:86
StreamTransmitFlags streamTransmitFlags
Flags to enable streams image transmission.
Definition StereoParameters.h:84
float scan3dBaseline
Definition StereoParameters.h:100
float scan3dCoordinateOffset
Minimum number of disparities.
Definition StereoParameters.h:79
float scan3dPrincipalPointV
Definition StereoParameters.h:101
float scan3dInvalidDataValue
Definition StereoParameters.h:82
float scan3dPrincipalPointU
Definition StereoParameters.h:102
float scan3dFocalLength
Definition StereoParameters.h:99
float scan3dCoordinateScale
Definition StereoParameters.h:105
bool scan3dInvalidDataFlag
Definition StereoParameters.h:81
bool postProcessDisparity
Flag to enable disparity post-processing.
Definition StereoParameters.h:92
int maxSpeckleSize
Speckle range value.
Definition StereoParameters.h:94
Used to hold a list of camera objects.
Definition CameraList.h:42
void Clear()
Clears the list of cameras and destroys their corresponding reference counted objects.
CameraPtr GetByIndex(unsigned int index) const
Returns a pointer to a camera object at the "index".
unsigned int GetSize() const
Returns the size of the camera list.
A reference tracked pointer to a camera object.
Definition CameraPtr.h:44
The Exception object represents an error that is returned from the library.
Definition Exception.h:51
virtual const char * what() const
virtual override for what().
Encapsulates a GenApi pointer dealing with the dynamic_cast automatically.
Definition Pointer.h:75
Definition GCString.h:43
Used to hold a list of image objects.
Definition ImageList.h:42
ImagePtr GetByPayloadType(const ImagePayloadType payloadType) const
Returns a pointer to an image object with the specified image payload type.
A reference tracked pointer to an image object.
Definition ImagePtr.h:46
static PointCloud ComputePointCloud(const ImagePtr &disparityImage, const ImagePtr &rectifiedImage, const PointCloudParameters &pointCloudParameters, const StereoCameraParameters &stereoCameraParameters)
Computes 3D point cloud from a stereo pair consisting of a disparity/rectified image using a stereo m...
The PointCloud object class.
Definition PointCloud.h:46
A reference tracked pointer to a system object.
Definition SystemPtr.h:44
bool IsWritable(EAccessMode AccessMode)
Tests if writable.
Definition INode.h:277
bool IsReadable(EAccessMode AccessMode)
Tests if readable.
Definition INode.h:253
interface SPINNAKER_API_ABSTRACT INodeMap
Interface to access the node map.
Definition INodeMap.h:54
void SavePointCloudAsPly(const std::string &) const
The function writes the point cloud data to the specified file in PLY format.
bool PrintCameraCalibrationParams(INodeMap &nodeMap)
Prints the camera calibration parameters.
Definition SpinStereoHelper.cpp:960
Definition SpinStereoHelper.cpp:34
bool ValidateImageList(const StreamTransmitFlags &streamTransmitFlags, ImageList &imageList)
Definition SpinStereoHelper.cpp:765
bool ConfigureAcquisition(CameraPtr pCam, StreamTransmitFlags &streamTransmitFlags)
Definition SpinStereoHelper.cpp:249
bool ConfigureStereoProcessing(INodeMap &nodeMapCamera, StereoParameters &stereoParameters)
Definition SpinStereoHelper.cpp:226
Definition Autovector.h:36
Definition GCString.h:31
Definition BasePtr.h:24
Definition StereoParameters.h:40
bool rawSensor1TransmitEnabled
Flag to enable raw sensor1 image transmission.
Definition StereoParameters.h:41
bool rawSensor2TransmitEnabled
Flag to enable raw sensor2 image transmission.
Definition StereoParameters.h:42
bool rectSensor1TransmitEnabled
Flag to enable rectified sensor1 image transmission.
Definition StereoParameters.h:43
bool disparityTransmitEnabled
Flag to enable disparity image transmission.
Definition StereoParameters.h:45
bool rectSensor2TransmitEnabled
Flag to enable rectified sensor2 image transmission.
Definition StereoParameters.h:44
Provides easier access to the current version of Spinnaker.
Definition SpinnakerDefs.h:657
unsigned int minor
Minor version of the library.
Definition SpinnakerDefs.h:662
unsigned int major
Major version of the library.
Definition SpinnakerDefs.h:659
unsigned int type
Version type of the library.
Definition SpinnakerDefs.h:665
unsigned int build
Build number of the library.
Definition SpinnakerDefs.h:668
Definition SpinnakerDefs.h:741
unsigned int ROIImageTop
Definition SpinnakerDefs.h:751
unsigned int ROIImageLeft
Definition SpinnakerDefs.h:747
unsigned int decimationFactor
Definition SpinnakerDefs.h:744
unsigned int ROIImageBottom
Definition SpinnakerDefs.h:757
unsigned int ROIImageRight
Definition SpinnakerDefs.h:754
Definition SpinnakerDefs.h:798
float invalidDataValue
Definition SpinnakerDefs.h:805
float disparityScaleFactor
Definition SpinnakerDefs.h:804
float principalPointV
Definition SpinnakerDefs.h:803
float focalLength
Definition SpinnakerDefs.h:801
float principalPointU
Definition SpinnakerDefs.h:802
bool invalidDataFlag
Definition SpinnakerDefs.h:806
float baseline
Definition SpinnakerDefs.h:800
float coordinateOffset
Definition SpinnakerDefs.h:799
Definition StereoAcquisition.h:32
bool doEnableRectSensor2Transmit
Definition StereoAcquisition.h:37
bool doEnableRawSensor1Transmit
Definition StereoAcquisition.h:34
bool doEnableSpeckleFilter
Definition StereoAcquisition.h:40
unsigned int numImageSets
Definition StereoAcquisition.h:33
bool doEnableRawSensor2Transmit
Definition StereoAcquisition.h:35
bool doEnablePointCloudOutput
Definition StereoAcquisition.h:39
bool doEnableDisparityTransmit
Definition StereoAcquisition.h:38
bool doEnableRectSensor1Transmit
Definition StereoAcquisition.h:36